
iormaol of c%oniurograj7~, 1% (Em?) 349-3u 
E&Y& sdatific RMishing Company, Amstenfam - Printed in The Netherlands 

THE DYN4MIC DIFFUSION CONSTANT WITHIN FLUID FLOW IN AN 
OPEN STRAIGHT TUBE WITH AN ELLIPTICAL CROSS-SECTION 

MM- J. E. WLAY 

2% Perkii+E.l- Corporarioz, Xorndk, CT ( U_S_A_) 

(Rccehed March 2Oth, 1980) 

SUMMARY 

The concept of the dynamic diffusion constant within fluid flow in an open 
tube with a circular cross-section, elaborated by Westhaver and Taylor, is extended 
to the cnse of an open tube with an elliptical cross-section. 

IXTFCODUCTION 

There has been, of late, a surge of interest in the application to chromato- 
graphy of tubes with a non-circular cross-,x&on, and it was thought that the exten- 
sion of the work on diffusion in round tubes to tubes with an elliptical cross-section 
would Serve to give as well an insight in the behavior of fluids in tubes with still 
another cross-section, such as a rectangular cross-section. 

When a miscible sample is introduced instantaneously and uniformly in a 
cross-section of a carrier fluid flowing in accordance with Poiseuille Iaw within an 
open, straight tube with a circular cross-section and without 2 retentive layer for the 
sample on its wall, several distinct phases follow the injection. 

During an initial phase the sample diffuses isotropically within the carrier, 
and the variance of its distribution with respect to the tube axis, the s-axis, increases 
linearly with time. 

This first phase is followed by a second phase during which the sample is 
given by the carrier the paraboloidal distribution typical of Poiseuille flow. During 
this second phase the overall distribution of the sample within the tube is essentially 
uniform over the x-abscissa reached by the sample, and its variance increases qua- 
dratically with time. 

Then occurs a third phase durin, = which the sample near the wall, having 
diffused into the high carrier velocity gradient in that region, tends to catch up with 
the main body of the sample which has travelled at a higher speed, and builds up a 
hump in the rear of the formerly rectangular sample spread_ A computer simulation 
of this phase, and of *he following phase, during which the hump, having growu 
enough to overtake the front of the distribution, continues to have three infle_xion 
points in its leading edge, was made’ to obtain an insight into a tluid behavior for 
which there has not been an analytical treatment so far. 
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Eventually a fifth phase is ushered in by the coalescence of the three inflexion 
points of the leading edge into one, so that the overall sample distribution begins to 
suggest the gaussian distribution which is approached asymptotically as time goes on. 

As this Cfth phase develops, the sample behaves more and more as if its 
spreading were determined by a diffusing process characterized by the dynamic 
di&sion constant DI 

calculated by Westhave and Taylo?, and in which D, v. and r. are the static diffusion 
constant, the average carrier velocity and the inner tube radius, respectiveIy. 

The purpose of this study is the extension of eqn- 1 to the case when the tube 
cross-section is elliptical. 

DISCUSSXON 

For the calculation of D1 for the elliptical case, a tist task consists in deter- 
mining the velocity distribution within the carrier for the linear (Poiseuille) case. 
Toward this end we note first that we must then have 

v, = vz = 0 (2) 

these two vanishing velocities being within the plane normal to the x-axis, in which 
the elliptical inner wall is determined by 

where a and b are the semi-main axes of the elipse. Eqn. 2 is an immediate con- 
clusion from the assumed linearity of the flow process, because vY and v, being 
measured normally to the main flow could depend only upon an even power of that 
flow. 

Next we express the negligible incompressibility of the fluid with the relation 

wherefrom, by virtue of eqn. 2: 

av,lax = 0 (4) 

We then write the six classical equations connecting the velocity components 
of a fluid of viscosiv fc with the tensions tx, rY, tr, t_, trr and z, on an elementary 
cube of fluid. We have first 



and by virtue ofeqn. 2: 

Next, we write that there are no field forces acting on the fluid, Le., since 

and, by virtue of eqn. 7: 

(10) 

This last equation, together with the boundaq condition that v, vanish at 
the tube walls, permits to determine the general form of v,: 

And we obtain with eqa. 10: 

(11) 

(12) 
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Equating separately the terms with the common I/rxI/t factor leads to the 
CXpdiOU 

,=D[l+($)zf($)~ (21) 

and the identical equation is obtained by equating separately the terms in 
(x-e-v&/4DIt2t/L 
Equating separately the terms in (x-e- v,$)/W,tdi yields the other equation: 

This equation, together with the boundaq condition that tej& vanish at the 
wall aiong a normai to it, xrves to determine e. This last condition demands, by 
virtue of Green’s theorem, that the inte_& of the right-hand side of eqn. 22 over 
the ellipse area vanish, which can be verified to be the case, owing to the selection of 
vO as the eoeflicient of t in x-e -vOt_ 

It can be verified by inspection that 

fulfills eqn. 22 and the boundary conditions. 
We are now in a position to determine D, from eqn. 21 by the device of 

using the average value of (&/SJ+~ and (&.!3~)~ over the ellipse. This device cm- 
stitute-s the approximation required to determine the value of DI which will determine 
the value of c which is reached asymptotically after increasingly greater times. The 
physical interpreration of the right-hand side of eqn_ 21 is that the first member of 
the bracket yields the entropy increase due to longitudinal diffusion of the sample 
along the x-axis while the other two terms represent the diffusion of the sample in the 
two radial directions. 

In the determination of the averqe values of (&/a# and (&,@$ use can 
be made of the formula giving the average vaIue of J-%9’ over the ellipse, which is 

pi?-= 
(2m)! (2n)! 

2=+‘“m!n! (m + n +- I)! 
2%” 

and we obtain 

(24) 

which, as it should, gives We&aver and Taylor formula when a=6=ro. 
it could be of interest for chromatographic applications to extend eqn. 24 to 

the case of tube wal!s with a retentive layer, but it will be immediately realized that a 
uniform layer will lead to the use of eiliptic functions. 
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CONCLUSIONS 

When, e.g., a>>b eqn. 24 can be approximated by 

D1~W + (Sv&576D) (25) 

and when eqn. 25 is compared with eqn. 1, it can be seen that the dynamic diffusion 
constant Dr, and therefore also the HETP of an open tube without a retentibe layer on 
the wall, will be the same as if the elliptical tube had been replaced by a round tube 
with a radius r, equal to: 

V 5 
r, = 

Tzaw 

On the other hand, 
approximately : 

0.645LZ cm 

the resistance to flow, given by eqn. 15, can be written 

Eqns. 26 and 27 lead us therefore to the conclusion that in elliptical tubes, 
and therefore also in tubes with a rectangular cross-section, the HETP, namely the 
quantity which we would like to be as small as possible, is determined essentiahy by 
the largest dimension of the elliptical cross-section, whereas the resistance to flow, 
namely another quantity which we would like to be as small as possible, is determined 
mostly by the inverse cube of the smallest dimension of the ellipse. 

It is concluded therefore that tubes with an elongated cross-section such as a 
highly excentric ellipse or a very elongated rectangle, will have an inferior chromato- 
graphic behavior when compared to round tubes. 
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