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SUMMARY

The concept of the dynamic diffusion constant within fluid flow in an open
tube with a circular cross-section, elaborated by Westhaver and Taylor. is extended
to the case of an open tube with an elliptical cross-section.

INTRODUCTION

There has been, of late, a surge of interest in the application to chromato-
graphy of tubes with a non-circular cross-section, and it was thought that the exten-
sion of the work on diffusion in round tubes to tubes with an elliptical cross-section
would serve to give as well an insight in the behavior of fiuids in tubes with still
another cross-section, such as a rectangular cross-section.

When a miscible sample is introduced instantaneously and uniformly in a
cross-section of a carrier fluid flowing in accordance with Poiseuille law within an
open, straight tube with a circular cross-section and without a retentive layer for the
sample on its wall, several distinct phases follow the injection.

During an initial phase the sample diffuses isotropically within the carrier,
and the variance of its distribution with respect to the tube axis, the x-axis, increases
linearly with time.

This first phase is followed by a second phase during which the sample is
given by the carrier the paraboloidal distribution typical of Poiseuille flow. During
this second phase the overall distribution of the sample within the tube is essentially
uniform over the x-abscissa reached by the sample, and its variance increases qua-
dratically with time. ’

Then occurs a third phase during which the sample near the wall, having
diffused into the high carrier velocity gradient in that region, tends to catch up with
the main body of the sample which has travelled at a higher speed, and builds up a
hump in the rear of the formerly rectangular sample spread. A computer simulation
of this phase, and of the following phase, during which the hump, having grown
enough to overtake the front of the distribution, continues to have three inflexion
points in its leading edge, was made! to obtain an insight into a fiuid behavior for
which there has not been an analytical treatment so far.
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Eventually a fifth phase is ushered in by the coalescence of the three inflexion
points of the leading edge into one, so that the overall sample distribution begins to
suggest the gaussian distribution which is approached asymptotically as time goes on.

As this fifth phase develops, the sample behaves more and more as if its
spreading were determined by a diffusing process characterized by the dynamic

difiusion constant D,

Vo" 0
48D 1

calculated by Westhaver? and Taylor®, and in which D, v, and r, are the static diffusion
constant, the average carrier velocity and the inner tube radius, respectively.
The purpose of this study is the extension of eqn. 1 to the case when the tube

cross-section is elliptical.

D, =D 4 ¥

DISCUSSION

For the calculaiion of D, for the elliptical case, a first task consists in deter-
mining the velocity distribution within the carrier for the linear (Poiseuille) case.
Toward this end we pote first that we must then have

@

vy =v,=0

these two vanishing velocities being within the plane normal to the x-axis, in which
the elliptical inner wall is determined by

yz 22 .

& T =]
where a and b are the semi-main axes of the clipse. Egn. 2 is an immediate con-
clusion from the assumed linearity of the flow process, because v, and v, being

measured normally to the main flow could depend only upon an even power of that

flow.
Next we express the negligible incompressibility of the fluid with the relation

ov, v, ov,
ox + + 9z 0 3
wherefrom, by virtue of egn. 2:
v fox =0 @

We then write the six classical equations connecting the velocity components
of a fluid of viscosity g with the tensions T, Ty Tzy Ty Txc A0 Ty on an elementary

cube of fluid. We have first

oy, av,

(r—3)—%=—®%=0 ©2)
av, ov.y _

_a_y_._ az)__z',—‘r,—o (5b)
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wherefrom
=T, =T = —p(x) ©)

the last equation expressing the condition that the essential pressure drop is in the
x-direction.

We have also
v, ov,\
#l+5) == (7a)
v, ov.y
o ta) == (7b)
ov, ov.y
sl +5) == o)
and by virtue of egn. 2:
#(Ov/0) =7, (82)
#(0ve[02) = T (8b)
T,. =0 (8c)

Next, we write that there are no field forees acting on the fluid, ie., since

. 8Tz, Ot |, 0T
f‘*a::"‘ oy ' oz =0
and
f:=0
we have
dr. | O, . Fe _, ©

ox ay | ez
and, by virtue of eqn. 7:
ét, _  dp (iizvx , azv,) 10)

3 ' ez

This last equation, together with the boundary condition that v_ vanish at
the tube walls, permits to determine the general form of v,:

2 z2
ve =20l - — ) an
And we obtain with ega. 10:

T
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Integration of egn. 11 over the entire ellipse gives the fotal fluid flow F:

F = mabv, (13)
For a pipe of length ! we obtain for the total pressure drop, for a given flow F
p____dp _4F 1 1
T welE ) ay
whence, for the hydrodynamic or pneumatic resistance R of the pipe
_p _ 4l 11
R=% =5+ ) (15)

which, for a=b=r,, reduces to the classical value for the resistance of a round pipe.
The derivation of the dynamic or effective diffusion constant D, starts with
the observation that, were there no flow, the one-dimensional diffusion equation

d?e de
DoE = a (16)

where ¢ designates the concentration of sample within the solute, admits the
solution:
xz

c(x, 1) =e m/w/t an

Accordingly, we shall postulate that, when the fluid flow has the average
velocity v, we may replace x by x—e—vy? in eqn. 17 [e=e(y,2)]

_ (x—e—p,t)?
cEmpn=c 1y (18)

and examine under what condition the comcentration so expressed is approached
asymptotically by the physical model.
We replace ¢ from eqn. 18 in the three-dimensional diffusion equation:

o= de % 45 _ 2 ¥z
Dic=Gr =g +ixgude=gr+m(l —Z — ) 5 9
This substitution yields:
[__ 1 T (x —e — ) + (x — e — v t)? (9efay)®
2Dt V't 4D%2 /¢ 4Dk* V't
(x — e —vw!) (Fe/0y®)  (3efdy) + (x — e — vwt)? (92/32)? "
2Dt Vi 2Dt Vi 4D% V't
n (x — e —wt) (/o)  (Fefdz) ] _ vo(x —e—v) +
2Dt V't 2Dyt V1 2Dt
(x — e — wt)? 1 ¥ 2y /x —e — vyt
— — 20 (1 — = — 5) |——————) (@0
4D VT VT °( a* bz) ( 2Dt V¥t )
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Equating separately the terms with the common 1/£4/t factor leads to the
equation

D,=D [l + (g;)2 + (g:fn @

and the identical equation is obtained by equating separately the terms in
(x—e—vei P [4D 12/t
Equating separately the terms in (x—e—vy?)/2D, 74/ yields the other equation:

&e | d% Vo {

37 * 922 D\

¥ z
1 -2 —24) 22)

This equation, together with the boundary condition that ce/@n vanish at the
wall along 2 normal to it, serves to determine e. This last condition demands, by
virtue of Green’s theorem, that the integral of the right-hand side of eqn. 22 over
the ellipse area vanish, which can be verified to be the case, owing to the selection of
v, as the coefficient of 7 in x—e—v,t.

It can be verified by inspection that

Yo

== 2 L2y — 2248 - )2+
BPGE TR |- 2@ T2 —20a + )2 -

e

(v d)rr e (142.5) 2 @3)
fulfills eqn. 22 and the boundary conditions.

We are now in a position to determine D, from egn. 21 by the device of
using the average value of (3e/@y)* and (Ge/o=)? over the ellipse. This device con-
stitutes the approximation required to determine the value of D; which will determine
the value of ¢ which is reached asymptotically after increasingly greater times. The
physical interpretation of the right-hand side of eqn. 21 is that the first member of
the bracket vields the entropy increase due to longitudinal diffusion of the sample
along the x-axis while the other two terins represent the diffusion of the sample in the
two radial directions.

In the determination of the average values of (¢/3y)* and (38e¢/8z)* use can
be made of the formula giving the average value of 3>™z2 over the ellipse, which is

(2m)! (2n)!

Yo = m i m DI
and we obtain
.2 = 192K £
D, — p 4 Yo5a + 124°%* + 5bY) )

576D (& 4 59

which, as it should, gives Westhaver and Taylor formula when a=b=r,.

It could be of interest for chromatographic applications to extend eqgn. 24 to
the case of tube walls with a retentive layer, but it will be immediately realized that a
uniform layer will lead to the use of elliptic functions.
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CONCLUSIONS

When, e.g., a>>b eqn. 24 can be approximated by
D, ~D 4- (5v.a%/576D) (25)

and when eqn. 25 is compared with egn. 1, it can be seen that the dynamic diffusion
constant D,, and therefore also the HETP of an open tube without a retentibe layer on
the wall, will be the same as if the elliptical tube had been replaced by a round tube
with a radius r, equal to:

Fg = 155 a =~ 0.645¢ (26)

On the other hand, the resistance to flow, given by eqn. 15, can be written
approximately:

_ 4l 1
R=——"—s 27

Eqns. 26 and 27 lead us therefore to the conclusion that in elliptical tubes,
and therefore also in tubes with a rectangular cross-section, the HETP, namely the
quantity which we would like to be as small as possible, is determined essentially by
the largest dimension of the elliptical cross-section, whereas the resistance to flow,
namely another quantity which we would like to be as small as possible, is determined
mostly by the inverse cube of the smallest dimension of the ellipse.

It is concluded therefore that tubes with an elongated cross-section such as a
highly excentric ellipse or a very elongated rectangle, will have an inferior chromato-
graphic behavior when compared to round tubes.
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